Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 920
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Open Vet J ; 14(1): 70-89, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633150

RESUMO

Background: Organic selenium (Sel-Plex®) supplementation holds considerable promise for improving the effectiveness of fish production. Aim: This experiment was accomplished to judge the potential benefits of Sel-Plex® nutritional additive on growth outcomes, physiological response, oxidative status, and immunity-linked gene expression in Nile tilapia (Oreochromis niloticus) fingerlings exposed to bacterial infection with Aeromonas hydrophila. Methods: Utilizing a basal diet of 30% protein, four experimental diets were prepared, each of which contained Sel-Plex® at concentrations of 0.0, 0.5, 1, and 2 mg/kg, respectively. Three replicates of 20 fish/treatment were used using 240 healthy Nile tilapia fingerlings. Fish were placed in 12 glass aquariums and separated into 4 groups at random. For the entire span of 8 weeks, diets were admitted to fish at a 3% rate of fish biomass/aquarium. After the feeding trial, pathogenic A. hydrophila was intraperitoneally injected into fish of each treatment, and fish were observed for 15 days to track the survival rate (SR) after the challenge. Results: Growth performance, physiological response, immunological parameters (phagocytic activity, phagocytic index, and lysozyme), and antioxidant parameters [catalase, superoxide dismutase (SOD), malondialdehyde, and glutathione peroxidase (GPx)] were noticeably improved in Sel-Plex® treated groups. Moreover, Sel-Plex® increased gene expression linked with the immune system in the liver (tumor necrosis factor-alpha and interleukin 1ß), to growth (insulin-like growth factor 1 and growth hormone receptor), and antioxidants (SOD and GPx). Under pathogen-challenge conditions, the employed dietary Sel-Plex® supplementation could successfully lower fish oxidative stress, offering a potential preventive additive for Nile tilapia instead of antibiotics. On the other hand, Sel-Plex® significantly enhanced each of three intestinal morphological measurements (villus width, villus length, and crypt depth), demonstrating the greatest influence on the improvement of intestinal structure overall. In the Nile tilapia control group, the infection with A. hydrophila caused noticeable degenerative alterations in the gut, hepatopancreas, spleen, and posterior kidney. The severity of the lesion was significantly reduced and significantly improved with higher Sel-Plex® concentrations. Sel-Plex® supplemented groups had 100% SRs among the A. hydrophila-challenged groups. Conclusion: It could be advised to enrich the diets of Nile tilapia fingerlings with 1-2 mg.kg-1 of Sel-Plex® to enhance growth rate, physiological response, immunological reaction, and intestinal absorptive capacity.


Assuntos
Ciclídeos , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas hydrophila/metabolismo , Ciclídeos/metabolismo , Resistência à Doença , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Suplementos Nutricionais , Antioxidantes/metabolismo , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Expressão Gênica
2.
PLoS One ; 19(4): e0301205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625974

RESUMO

The present study investigated the potential role of different essential amino acids (AA) in striped catfish (Pangasius hypophthalmus). Fish (initial weight = 17.91±0.27 g, n = 260) were fed with eight isonitrogenous (30%), and isolipidic diets (6%) formulated to include different combinations of tryptophan (Trp), methionine (Met), and lysine (Lys) (T0: Zero AA, T1: Trp, T2: Lys, T3: Met, T4: Trp+Met, T5: Lys+Trp, T6: Met+Lys, T7: Lys+Trp+Met) for eight weeks. The dose of amino acid supplementation, whether individually or in combination, was 5g of each amino acid per kg of diet. The trial comprised eight treatments, with each treatment consisted of three replicates (n = 10/replicate). At the end of the growth experiment, the highest total body weight, crude protein, digestive enzymatic activity, immune response, and amino acids level were observed in treatments supplemented with amino acids compared to T0. After the growth experiment, fish in all treatments were exposed to Staphylococcus aureus (5×105 CFU/ml). For bacterial challenge trial, the T0 treatment was designated as positive (+ve T0) and negative control (-ve T0). Following the S. aureus challenge, fish fed with amino acids showed a better response to reactive oxygen species and lipid peroxidation, as indicated by the increased levels of catalase and superoxide dismutase. Conversely, the concentration of malondialdehyde gradually decreased in all treatments compared to the +ve T0 treatment. It is concluded that supplementation of amino acids improved the growth, protein content, and immunocompetency against S. aureus in striped catfish. The most favorable outcomes in striped catfish were shown by fish supplemented with T7 diet. These essential amino acids hold potential as efficient supplements for use in the intensive aquaculture for striped catfish.


Assuntos
Peixes-Gato , Lisina , Animais , Aminoácidos , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais , Resistência à Doença , Lisina/farmacologia , Metionina/farmacologia , Racemetionina , Staphylococcus aureus , Triptofano/farmacologia
3.
Microbiol Res ; 283: 127693, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38490029

RESUMO

This study evaluated the effects of Bacillus subtilis BSXE-1601, applied either as dietary supplementation or water addition, on growth performance, immune responses, disease resistance of Penaeus vannamei, and microbiota in shrimp gut and rearing water. During the 42-day feeding experiment, shrimp were fed with basal diet (CO and BW group), basal diet supplemented with live strain BSXE-1601 at the dose of 1 × 109 CFU kg-1 feed (BD group) and 15 mg kg-1 florfenicol (FL group), and basal diet with strain BSXE-1601 added to water at the concentration of 1 × 107 CFU L-1 every five days (BW group). Results showed that dietary supplementation of strain BSXE-1601 significantly promoted growth performance of shrimp, both in the diet and water, enhanced disease resistance against Vibrio parahaemolyticus (P < 0.05). The BD and BW groups exhibited significant increases in acid phosphatase, alkaline phosphatase, lysozyme, peroxidase, superoxide dismutase activities, phenonoloxidase content in the serum of shrimp compared to the control (P < 0.05). Meanwhile, the expression of immune-related genes proPO, LZM, SOD, LGBP, HSP70, Imd, Toll, Relish, TOR, 4E-BP, eIF4E1α, eIF4E2 were significantly up-regulated compared to the control (P < 0.05). When added in rearing water, strain BSXE-1601 induced greater immune responses in shrimp than the dietary supplement (P < 0.05). Chao1 and Shannon indices of microbiota in rearing water were significantly lower in BD group than in the control. The microbiota in rearing water were significantly altered in BD, BW and FL groups compared to the control, while no significant impacts were observed on the microbiota of shrimp gut. When supplemented into the feed, strain BSXE-1601 obviously reduced the number of nodes, edges, modules in the ecological network of rearing water. The results suggested that dietary supplementation of BSXE-1601 could be more suitable than water addition in the practice of shrimp rearing when growth performance, non-specific immunity, disease resistance against V. parahaemolyticus in shrimp were collectively considered.


Assuntos
Microbiota , Penaeidae , Animais , Resistência à Doença , Bacillus subtilis , Imunidade Inata , Ração Animal/análise , Suplementos Nutricionais/análise
4.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503565

RESUMO

AIMS: This study aimed to assess the impact of rocket (Eruca sativa) extract on Verticillium wilt in eggplants, explore rhizospheric microorganisms for disease biocontrol, and evaluate selected strains' induced systemic resistance (ISR) potential while characterizing their genomic and biosynthetic profiles. METHODS AND RESULTS: Rocket extract application led to a significant reduction in Verticillium wilt symptoms in eggplants compared to controls. Isolated microorganisms from treated soil, including Paraburkholderia oxyphila EP1, Pseudomonas citronellolis EP2, Paraburkholderia eburnea EP3, and P. oxyphila EP4 and EP5, displayed efficacy against Verticillium dahliae, decreasing disease severity and incidence in planta. Notably, strains EP3 and EP4 triggered ISR in eggplants against V. dahliae. Genomic analysis unveiled shared biosynthetic gene clusters, such as ranthipeptide and non-ribosomal peptide synthetase-metallophore types, among the isolated strains. Additionally, metabolomic profiling of EP2 revealed the production of metabolites associated with amino acid metabolism, putative antibiotics, and phytohormones. CONCLUSIONS: The application of rocket extract resulted in a significant reduction in Verticillium wilt symptoms in eggplants, while the isolated microorganisms displayed efficacy against V. dahliae, inducing systemic resistance and revealing shared biosynthetic gene clusters, with metabolomic profiling highlighting potential disease-suppressing metabolites.


Assuntos
Verticillium , Verticillium/metabolismo , Doenças das Plantas/prevenção & controle , Extratos Vegetais/farmacologia , Gossypium , Resistência à Doença
5.
Fish Shellfish Immunol ; 148: 109493, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461877

RESUMO

This study investigated the benefits of yeast, Saccharomyces cerevisiae and/or garlic, Allium sativum supplementation in diets of Nile tilapia with regard to growth, antioxidant status, hepatic and intestinal histoarchitecture, expression of growth- and immune-related genes, and resistance to Aeromonas sobria infection. Fish (with an initial weight of 9.43 ± 0.08 g) were allocated to twelve hapas, organized into four triplicate treatment groups defined as control (no supplementation), yeast (4 g/kg diet), garlic (30 g/kg diet), and a mixture of both. This trial continued over a 60-day feeding period. Results revealed that combined treatment (yeast + garlic) demonstrated the most promising outcomes regarding growth, with significantly higher final body weights, weight gains, and specific growth rates compared to other groups. Moreover, this combination enhanced hepatic antioxidant status, as evidenced by elevated levels of reduced glutathione and activities of catalase and superoxide dismutase enzymes, reflecting improved defense against oxidative stress. Histological assessments of the livers and intestines demonstrated structural enhancements in yeast and garlic treatments, suggesting improvements in organ health. In comparison to the control, the gene expression analyses unveiled increased expression of growth-related (igf-1 and ghr1) and immune-related (il-10, lyz, and hep) genes in the test groups, indicating a possible reinforcement of the growth and immune responses. The combined treatment also showed the highest resistance to A. sobria infection, as evidenced by improved survival rates and lower mortality compared with the other groups. These findings highlight the benefits of a combination of both yeast and garlic as a dietary supplementation regimen. In conclusion, this study suggests that the combined treatment regimen could be considered an effective strategy to promote the health and productivity of Nile tilapia under production conditions.


Assuntos
Aeromonas , Ciclídeos , Doenças dos Peixes , Alho , Animais , Antioxidantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Suplementos Nutricionais/análise , Dieta/veterinária , Fígado/metabolismo , Intestinos , Ração Animal/análise , Resistência à Doença
6.
Int J Biol Macromol ; 263(Pt 1): 130072, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346615

RESUMO

MYB transcription factor despite their solid involvement in growth are potent regulator of plant stress response. Herein, we identified a MYB gene named as StoMYB41 in a wild eggplant species Solanum torvum. The expression level of StoMYB41 was higher in root than the tissues including stem, leaf, and seed. It induced significantly by Verticillium dahliae inoculation. StoMYB41 was localized in the nucleus and exhibited transcriptional activation activity. Silencing of StoMYB41 enhanced susceptibility of Solanum torvum against Verticillium dahliae, accompanied by higher disease index. The significant down-regulation of resistance marker gene StoABR1 comparing to the control plants was recorded in the silenced plants. Moreover, transient expression of StoMYB41 could trigger intense hypersensitive reaction mimic cell death, darker DAB and trypan blue staining, higher ion leakage, and induced the expression levels of StoABR1 and NbDEF1 in the leaves of Solanum torvum and Nicotiana benthamiana. Taken together, our data indicate that StoMYB41 acts as a positive regulator in Solanum torvum against Verticillium wilt.


Assuntos
Ascomicetos , Solanum melongena , Solanum , Verticillium , Solanum/genética , Verticillium/metabolismo , Ascomicetos/metabolismo , Solanum melongena/genética , Doenças das Plantas/genética , Resistência à Doença/genética , Gossypium/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Fish Shellfish Immunol ; 146: 109411, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301813

RESUMO

This study looked at the toxic impacts of water-born acrylamide (ACR) on Nile tilapia (Oreochromis niloticus) in terms of behaviors, growth, immune/antioxidant parameters and their regulating genes, biochemical indices, tissue architecture, and resistance to Aeromonas hydrophila. As well as the probable ameliorative effect of Chlorella vulgaris (CV) microalgae as a feed additive against ACR exposure was studied. The 96-h lethal concentration 50 of ACR was investigated and found to be 34.67 mg/L for O. niloticus. For the chronic exposure study, a total of 180 healthy O. niloticus (24.33 ± 0.03 g) were allocated into four groups in tri-replicates (15 fish/replicate), C (control) and ACR groups were fed a basal diet and exposed to 0 and 1/10 of 96-h LC50 of ACR (3.46 mg/L), respectively. ACR+ CV5 and ACR+ CV10 groups were fed basal diets with 5 % and 10 % CV supplements, respectively and exposed to 1/10 of 96-h LC50 of ACR for 60 days. After the exposure trial (60 days) the experimental groups were challenged with A. hydrophila. The findings demonstrated that ACR exposure induced growth retardation (P˂0.01) (lower final body weight, body weight gain, specific growth rate, feed intake, protein efficiency ratio, final body length, and condition factor as well as higher feed conversion ratio). A substantial decrease in the immune/antioxidant parameters (P˂0.05) (lysozyme, serum bactericidal activity %, superoxide dismutase, and reduced glutathione) and neurotransmitter (acetylcholine esterase) (P˂0.01) was noticed with ACR exposure. A substantial increase (P˂0.01) in the serum levels of hepato-renal indicators, lipid peroxidation biomarker, and cortisol was noticed as a result of ACR exposure. ACR exposure resulted in up-regulation (P˂0.05) of the pro-inflammatory cytokines and down-regulation (P˂0.05) of the antioxidant-related gene expression. Furthermore, the hepatic, renal, brain, and splenic tissues were badly affected by ACR exposure. ACR-exposed fish were more sensitive to A. hydrophila infection and recorded the lowest survival rate (P˂0.01). Feeding the ACR-exposed fish with CV diets significantly improved the growth and immune/antioxidant status, as well as modulating the hepatorenal functions, stress, and neurotransmitter level compared to the exposed-non fed fish. In addition, modulation of the pro-inflammatory and antioxidant-related gene expression was noticed by CV supplementation. Dietary CV improved the tissue architecture and increased the resistance to A. hydrophila challenge in the ACR-exposed fish. Noteworthy, the inclusion of 10 % CV produced better results than 5 %. Overall, CV diets could be added as a feed supplement in the O. niloticus diet to boost the fish's health, productivity, and resistance to A. hydrophila challenge during ACR exposure.


Assuntos
Chlorella vulgaris , Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Antioxidantes/metabolismo , Resistência à Doença , Dieta/veterinária , Suplementos Nutricionais , Neurotransmissores/metabolismo , Peso Corporal , Transtornos do Crescimento , Acrilamidas , Ração Animal/análise , Doenças dos Peixes/induzido quimicamente , Infecções por Bactérias Gram-Negativas/veterinária
8.
Fish Physiol Biochem ; 50(2): 543-556, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38180679

RESUMO

This study evaluated the effects of prickly pear (Opuntia ficus-indica) peel (PPP) on salinity tolerance, growth, feed utilization, digestive enzymes, antioxidant capacity, and immunity of Nile tilapia (Oreochromis niloticus). PPP was incorporated into four iso-nitrogenous (280 g kg-1 protein) and iso-energetic (18.62 MJ kg-1) diets at 0 (PPP0), 1 (PPP1), 2 (PPP2), and 4 (PPP4) g kg-1. Fish (9.69 ± 0.2 g) (mean ± SD) were fed the diets for 75 days. Following the feeding experiment, fish were exposed to a salinity challenge (25‰) for 24 h. Fish survival was not affected by the dietary PPP inclusion either before or after the salinity challenge. Fish fed the PPP-supplemented diets showed lower aspartate aminotransferase, alanine aminotransferase, cortisol, and glucose levels compared to PPP0, with the lowest values being observed in PPP1. Fish fed dietary PPP had higher growth rates and feed utilization than PPP0. Quadratic regression analysis revealed that the best weight gain was obtained at 2.13 g PPP kg-1 diet. The highest activities of protease and lipase enzymes were recorded in PPP1, while the best value of amylase was recorded in PPP2, and all PPP values were higher than PPP0. Similarly, PPP1 showed higher activities of lysozyme, alternative complement, phagocytic cells, respiratory burst, superoxide dismutase, glutathione peroxidase and catalase, and lower activity of malondialdehyde than in PPP0. Further increases in PPP levels above 2 g kg-1 diet led to significant retardation in the immune and antioxidant parameters. Thus, the inclusion of PPP at about 1 to or 2 g kg-1 diet can improve stress tolerance, immunity, and antioxidant capacity in Nile tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Opuntia , Animais , Antioxidantes/metabolismo , Opuntia/metabolismo , Tolerância ao Sal , Dieta/veterinária , Suplementos Nutricionais , Ração Animal/análise , Resistência à Doença
9.
Fish Shellfish Immunol ; 146: 109377, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228249

RESUMO

Functional supplements, including lysozyme, are highly approved as immunostimulant and antibacterial agents with a high potential for use in aquaculture. In this regard, Nile tilapia was treated with lysozyme at 0, 0.5, 1, 1.5, and 3 g/kg for 60 days, then challenged with Aeromonas hydrophila. Fish were stocked in 15 glass aquaria (70 L each) with an equal initial weight of 10.72 ± 0.71 g per fish and 15 fish per aquarium. The regression analysis revealed that dietary lysozyme supplementation at 1.83-2 g/kg enhanced the growth performance, protein efficiency ratio, and protein productive value while reducing the feed conversion ratio of tilapia. Markedly, tilapia treated with lysozyme had a low mortality rate (30-50 %) compared to the control, which recorded a 70 % mortality rate after 15 days of challenge with A. hydrophila. The regression analysis also revealed that the highest lysozyme activity of tilapia-fed lysozyme for 60 days is achieved by 2.05 g/kg lysozyme. The expression of Nf-κb, IL-1ß, and IL-8 genes is upregulated in tilapia-fed lysozyme at 0.5, 1, 1.5, and 3 g/kg for 60 days before and after A. hydrophila infection. The expression of GPX and CAT genes was higher in tilapia-fed lysozyme at 0.5, 1, 1.5, and 3 g/kg for 60 days before and after A. hydrophila infection. Before infection, the relative transcription of the lysozyme and C3 was upregulated in tilapia-fed lysozyme at 0.5, 1, 1.5, and 3 g/kg. However, lysozyme gene expression in tilapia treated with 0.5 g/kg lysozyme had no significant differences from those fed 0 g/kg lysozyme. After infection, the relative transcription of the lysozyme gene was upregulated in tilapia fed 1 and 1.5 g/kg, while tilapia fed 1 g/kg lysozyme had the highest C3 gene transcription. After infection, the hepatocytes in the livers of fish fed 0 g/kg lysozyme exhibited a noticeable fatty alteration, along with congestion, a light infiltration of inflammatory cells, and the start of necrosed cell regeneration. However, the livers of fish that received lysozyme were normal except for infiltrations of perivascular and interstitial mononuclear cells, depending on the supplementation dose. In conclusion, dietary lysozyme is recommended at 1.83-2.05 g/kg to gain high growth performance, immune response, and high resistance to A. hydrophila in Nile tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Tilápia , Animais , Aeromonas hydrophila/fisiologia , Galinhas , Resistência à Doença , Muramidase/genética , Suplementos Nutricionais , Dieta/veterinária , Ração Animal/análise
10.
Fish Shellfish Immunol ; 145: 109352, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171430

RESUMO

Nile tilapia reared under intensive conditions was more susceptible for Ichthyophthirius multifilii (I. multifiliis) infection eliciting higher mortality, lower productive rate and further bacterial coinfection with Aeromonas hydrophila (A. hydrophila). The higher potency of magnetic field of iron oxide nanoparticles (NPs) can kill pathogens through inhibiting their viability. Herein, coating of Chlorella vulgaris extract (ChVE) with magnetic iron oxide NPs (Mag iron NPs) can create an external magnetic field that facilitates their release inside the targeted tissues. Thus, the current study is focused on application of new functionalized properties of Mag iron NPs in combination with ChVE and their efficacy to alleviate I. multifiliis and subsequent infection with A. hydrophila in Nile tilapia. Four hundred fingerlings were divided into: control group (with no additives), three groups fed control diet supplemented with ChVE, Mag iron NPs and ChVE@Mag iron NPs for 90 days. At the end of feeding trial fish were challenged with I. multifiliis and at 9 days post challenge was coinfected by A. hydrophila. A remarkable higher growth rate and an improved feed conversion ratio were detected in group fed ChVE@Mag iron-NPs. The maximum expression of antioxidant enzymes in skin and gills tissues (GSH-Px, CAT, and SOD) which came in parallel with higher serum activities of these enzymes was identified in groups received ChVE@Mag iron-NPs. Furthermore, group fed a combination of ChVE and Mag iron-NPs showed a boosted immune response (higher lysozyme, IgM, ACH50, and MPO) prior to challenge with I. multifiliis. In contrast, fish fed ChVE@Mag iron-NPs supplemented diet had lower infection (decreased by 62%) and mortality rates (decreased by 84%), as well as less visible white spots (decreased by 92 % at 12 dpi) on the body surfaces and mucous score. Interestingly, post I. multifiliis the excessive inflammatory response in gill and skin tissues was subsided by feeding on ChVE@Mag iron-NPs as proved by down regulation of IL-1ß, TNFα, COX-2 and iNOS and upregulation of IL-10, and IgM, IgT and Muc-2 genes. Notably, group exposed to I. multifiliis-showed higher mortality when exposed to Aeromonas hydrophilia (increased by 43 %) while group fed ChVE@Mag iron-NPs exhibited lower morality (2%). Moreover, the bacterial loads of A. hydrophilia in fish infected by I. multifiliis and fed control diet were higher than those received dietary supplement of ChVE, Mag iron-NPs and the most reduced load was obtained in group fed ChVE@Mag iron-NPs at 7 dpi. In conclusion, ChVE@Mag iron-NPs fed fish had stronger immune barrier and antioxidant functions of skin and gills, and better survival following I. multifiliis and A. hydrophilia infection.


Assuntos
Chlorella vulgaris , Ciclídeos , Doenças dos Peixes , Animais , Antioxidantes/metabolismo , Adjuvantes Imunológicos/metabolismo , Suplementos Nutricionais , Dieta , Aeromonas hydrophila/fisiologia , Nanopartículas Magnéticas de Óxido de Ferro , Imunoglobulina M/metabolismo , Ferro/metabolismo , Ração Animal/análise , Resistência à Doença
11.
PLoS One ; 19(1): e0294949, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38289940

RESUMO

The present study investigated the potential role of Bacillus subtilis as probiotic in striped catfish (Pangasius hypophthalmus). Fish (initial weight = 150.00±2.63g n = 180) were stocked in circular tanks. Four isonitrogenous (30%) and isolipidic (3.29%) diets were formulated having supplementation of B. subtilis at four different levels (P0; 0, P1: 1×106, P2: 1×108 and P3: 1×1010 CFU/g). Each treatment had three replicates, while each replicate had fifteen fish. The trial started on second week of July and continued for eight weeks. Growth, feed conversion ratio, crude protein content, the concentration of amylase and protease, the profile of both dispensable and non-dispensable amino acids in all four dietary groups increased with a gradual increase of B. subtilis in the diet. At the end of growth experiment, fish in all four groups were exposed to Staphylococcus aureus (5×105 CFU/ml). After S. aureus challenge, fish fed with B. subtilis responded better to damage caused by reactive oxygen species and lipid peroxidation and better survival rate. The catalase and superoxide dismutase level also increased in response to bacterial challenge in B. subtilis fed groups. On the other hand, the concentration of malondialdehyde gradually decreased in these groups (+ve P0 >P1>P2>P3). It is concluded that supplementation of B. subtilis as a probiotic improved the growth, protein content, antioxidant response and immunocompetency against S. aureus in striped catfish. The optimum dosage of B. subtilis, at a concentration of 1×1010 CFU/g, resulted in the most favorable outcomes in striped catfish. This single bacterial strain can be used as an effective probiotic in large scale production of aquafeed for striped catfish. Future studies can investigate this probiotic's impact in the intensive culture of the same species.


Assuntos
Peixes-Gato , Probióticos , Animais , Resistência à Doença , Bacillus subtilis/química , Staphylococcus aureus , Probióticos/farmacologia , Dieta/veterinária , Ração Animal/análise , Suplementos Nutricionais
12.
Ecotoxicol Environ Saf ; 271: 115940, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218103

RESUMO

Coptis chinensis Franch is a perennial herb from the Ranunculaceae family with a long history of medicinal use. As the medicinal part, the rhizome of coptis often accumulates excessive cadmium (Cd) even at low concentrations in the soil, which not only compromises its medicinal safety but also raises concerns about adverse effects on human health. Therefore, effective strategies are needed to mitigate this accumulation and ensure its safe use in traditional medicine. This study utilized transcriptome profiling and physiological analysis to explore molecular mechanisms associated with ecological significance and the active accumulation of Cd in C. chinensis. The response to Cd in C. chinensis was assessed through RNA sequencing, Cd determination and isoquinoline alkaloid measurement using its roots, stems, and leaves. The transcriptome revealed, a total of 2667, 2998, or 2815 up-regulated deferentially expressed genes in roots, stems or leaves in response to Cd exposure. Furthermore, we identified phenylpropanoid and isoquinoline alkaloid biosynthesis as the key pathways response to Cd exposure, which suggests that C. chinensis may improve its tolerance to Cd through regulating the phenylpropanoid biosynthesis pathway. Under Cd exposure, plant-pathogen interaction in leaves was identified as the key pathway, which indicates that upregulation of genes involved in plant-pathogen interaction could enhance disease resistance in C. chinensis. WGCNA analysis identified WRKY8 (Cluster-55763.31419) and WRKY47 (Cluster-55763.221590) as potential regulators of secondary metabolic synthesis and plant-pathogen interaction pathway in C. chinensis triggered by Cd. The measurement of berberine, coptisine, palmatine, and epiberberine also demonstrated that Cd simulated the four isoquinoline alkaloids in roots. Therefore, our study not only presented a transcriptome expression profiles that revealed significant upregulation of genes involved in metal transport and detoxification pathways but also suggested a possible mechanism to cope with Cd accumulation. This knowledge provides a new insight into gene manipulation for controlling Cd accumulation, enhancing resistance and promoting synthesis of secondary metabolites with potential medicinal properties in other medicinal plant species.


Assuntos
Alcaloides , Cádmio , Humanos , Cádmio/toxicidade , Coptis chinensis , Resistência à Doença , Alcaloides/análise , Perfilação da Expressão Gênica , Transcriptoma , Isoquinolinas
13.
Fish Shellfish Immunol ; 144: 109270, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070587

RESUMO

This study discloses the nanoscale silicate platelet-supported nZnO (ZnONSP) applied as novel feed additives in aquaculture. The preparation of the nanohybrid (ZnO/NSP = 15/85, w/w) was characterized by UV-visible spectroscopy, powder X-ray diffraction and transmission electron microscope. The effects of ZnONSP on growth, zinc accumulation, stress response, immunity and resistance to Vibrio alginolyticus in white shrimp (Penaeus vannamei) were \demonstrated. To evaluate the safety of ZnONSP, shrimps (2.0 ± 0.3 g) were fed with ZnONSP containing diets (200, 400 and 800 mg/kg) for 56 days. Dietary ZnONSP did not affect the weight gain, specific growth rate, feed conversion ratio, survival rate, zinc accumulation, and the expression of heat shock protein 70 in tested shrimps. To examine the immunomodulatory effect of ZnONSP, shrimps (16.6 ± 2.4 g) were fed with the same experimental diets for 28 days. Dietary ZnONSP improved the immune responses of haemocyte in tested shrimps, including phagocytic rate, phagocytic index, respiratory burst, and phenoloxidase activity, and upregulated the expression of several genes, including lipopolysaccharide, ß-1,3-glucan binding protein, peroxinectin, penaeidin 2/3/4, lysozyme, crustin, anti-lipopolysaccharide factor, superoxide dismutase, glutathione peroxidase, clotting protein and α-2-macroglobulin. In the challenge experiment, shrimps (17.2 ± 1.8 g) were fed with ZnONSP containing diets (400 and 800 mg/kg) for 7 days and then infected with Vibrio alginolyticus. Notably, white shrimps that received ZnONSP (800 mg/kg) showed significantly improved Vibrio resistance, with a survival rate of 71.4 % at the end of 7-day observation. In conclusion, this study discovers that ZnONSP is a new type of immunomodulatory supplement that are effective on enhancing innate cellular and humoral immunities, and disease resistance in white shrimp.


Assuntos
Imunidade Inata , Penaeidae , Animais , Suplementos Nutricionais , Dieta/veterinária , Resistência à Doença , Vibrio alginolyticus/fisiologia , Zinco/farmacologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-37939898

RESUMO

The red pepper (Capsicum annuum) has gained great attention recently because of its biological and pharmacological characteristics. The present approach aimed to evaluate the effects of C. annuum alcoholic extract (CAE) supplementation on Nile tilapia (Oreochromis niloticus) growth performance, physiological status, some metabolic, immune, and regulatory genes expression, and resistance against Streptococcus agalactiae infection. Fish (22.26 ± 0.19 g) were assigned to four treatments (five replicates, each with 10 fish replicate-1) and fed tested diets for 60 days. The experimental diets were supplemented with CAE at 0, 0.4, 0.8, and 1.6 g kg-1, expressed as CAE0, CAE0.4, CAE0.8, and CAE1.6, respectively. The findings exhibited that CAE dietary supplementation improved growth performance, feed utilization, elevated growth hormone level, and digestive enzyme activities (amylase and protease), and lowered leptin hormone in a level-dependent manner. Boosting the mRNA expression of the transporter proteins (solute carrier family 15 member 2 and solute carrier family 26 member 6) and insulin-like growth factor-1 genes with a decrease in the myostatin gene expression was noticed in the CAE-fed groups. The innate immune (serum bactericidal activity %, complement 3, and phagocytic activity %) and antioxidant (glutathione peroxidase and total antioxidant capacity) parameters were significantly (p < 0.05) improved, and the serum malondialdehyde level was significantly decreased by CAE dietary inclusion. A marked upregulation in the mRNA expression of interleukins (il-1ß, il-6, il-8, and il-10), transforming growth factor-ß, glutathione peroxidase, and glutathione synthetase genes were observed in CAE-fed groups. Dietary CAE decreased the cumulative mortalities after the challenge with S. agalactiae by 20, 13.33, and 10% in CAE0.4, CAE0.8, and CAE1.6, respectively, compared to the control (40%). Overall, dietary supplementation with CAE could improve growth performance and physiological status, and modulate the expression of several regulatory genes in Nile tilapia. The recommended level of CAE is 1.6 g kg-1 to augment growth and health status.


Assuntos
Capsicum , Ciclídeos , Doenças dos Peixes , Animais , Capsicum/genética , Capsicum/metabolismo , Antioxidantes/metabolismo , Resistência à Doença , Ciclídeos/genética , Imunidade Inata , Suplementos Nutricionais , Dieta/veterinária , Glutationa Peroxidase/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Expressão Gênica , RNA Mensageiro/metabolismo , Ração Animal/análise , Doenças dos Peixes/prevenção & controle
15.
Adv Sci (Weinh) ; 11(7): e2307051, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063804

RESUMO

The plant hormone salicylic acid (SA) plays critical roles in plant innate immunity. Several SA derivatives and associated modification are identified, whereas the range and modes of action of SA-related metabolites remain elusive. Here, the study discovered 2,4-dihydroxybenzoic acid (2,4-DHBA) and its glycosylated form as native SA derivatives in plants whose accumulation is largely induced by SA application and Ps. camelliae-sinensis (Pcs) infection. CsSH1, a 4/5-hydroxylase, catalyzes the hydroxylation of SA to 2,4-DHBA, and UDP-glucosyltransferase UGT95B17 catalyzes the formation of 2,4-DHBA glucoside. Down-regulation reduced the accumulation of 2,4-DHBA glucosides and enhanced the sensitivity of tea plants to Pcs. Conversely, overexpression of UGT95B17 increased plant disease resistance. The exogenous application of 2,4-DHBA and 2,5-DHBA, as well as the accumulation of DHBA and plant resistance comparison, indicate that 2,4-DHBA functions as a potentially bioactive molecule and is stored mainly as a glucose conjugate in tea plants, differs from the mechanism described in Arabidopsis. When 2,4-DHBA is applied exogenously, UGT95B17-silenced tea plants accumulated more 2,4-DHBA than SA and showed induced resistance to Pcs infection. These results indicate that 2,4-DHBA glucosylation positively regulates disease resistance and highlight the role of 2,4-DHBA as potentially bioactive molecule in the establishment of basal resistance in tea plants.


Assuntos
Arabidopsis , Camellia sinensis , Catecóis , Hidroxibenzoatos , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Camellia sinensis/metabolismo , Resistência à Doença , Arabidopsis/metabolismo , Chá/metabolismo
16.
Plant J ; 117(5): 1356-1376, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38059663

RESUMO

Tea plant [Camellia sinensis (L.) O. Kuntze], as one of the most important commercial crops, frequently suffers from anthracnose caused by Colletotrichum camelliae. The plant-specific tau (U) class of glutathione S-transferases (GSTU) participates in ROS homeostasis. Here, we identified a plant-specific GST tau class gene from tea plant, CsGSTU45, which is induced by various stresses, including C. camelliae infection, by analyzing multiple transcriptomes. CsGSTU45 plays a negative role in disease resistance against C. camelliae by accumulating H2 O2 . JA negatively regulates the resistance of tea plants against C. camelliae, which depends on CsGSTU45. CsMYC2.2, which is the key regulator in the JA signaling pathway, directly binds to and activates the promoter of CsGSTU45. Furthermore, silencing CsMYC2.2 increased disease resistance associated with reduced transcript and protein levels of CsGSTU45, and decreased contents of H2 O2 . Therefore, CsMYC2.2 suppresses disease resistance against C. camelliae by binding to the promoter of the CsGSTU45 gene and activating CsGSTU45. CsJAZ1 interacts with CsMYC2.2. Silencing CsJAZ1 attenuates disease resistance, upregulates the expression of CsMYC2.2 elevates the level of the CsGSTU45 protein, and promotes the accumulation of H2 O2 . As a result, CsJAZ1 interacts with CsMYC2.2 and acts as its repressor to suppress the level of CsGSTU45 protein, eventually enhancing disease resistance in tea plants. Taken together, the results show that the JA signaling pathway mediated by CsJAZ1-CsMYC2.2 modulates tea plant susceptibility to C. camelliae by regulating CsGSTU45 to accumulate H2 O2 .


Assuntos
Camellia sinensis , Colletotrichum , Ciclopentanos , Oxilipinas , Camellia sinensis/genética , Camellia sinensis/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Resistência à Doença/genética , Colletotrichum/fisiologia , Chá/metabolismo , Transdução de Sinais
17.
Phytopathology ; 114(1): 61-72, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37530500

RESUMO

Endophytes play important roles in promoting plant growth and controlling plant diseases. Verticillium wilt is a vascular wilt disease caused by Verticillium dahliae, a widely distributed soilborne pathogen that causes significant economic losses on cotton each year. In this study, an endophyte KRS015, isolated from the seed of the Verticillium wilt-resistant Gossypium hirsutum 'Zhongzhimian No. 2', was identified as Bacillus subtilis by morphological, phylogenetic, physiological, and biochemical analyses. The volatile organic compounds (VOCs) produced by KRS015 or its cell-free fermentation extract had significant antagonistic effects on various pathogenic fungi, including V. dahliae. KRS015 reduced Verticillium wilt index and colonization of V. dahliae in treated cotton seedlings significantly; the disease reduction rate was ∼62%. KRS015 also promoted plant growth, potentially mediated by the growth-related cotton genes GhACL5 and GhCPD-3. The cell-free fermentation extract of KRS015 triggered a hypersensitivity response, including reactive oxygen species (ROS) and expression of resistance-related plant genes. VOCs from KRS015 also inhibited germination of conidia and the mycelial growth of V. dahliae, and were mediated by growth and development-related genes such as VdHapX, VdMcm1, Vdpf, and Vel1. These results suggest that KRS015 is a potential agent for controlling Verticillium wilt and promoting growth of cotton.


Assuntos
Acremonium , Ascomicetos , Verticillium , Bacillus subtilis/genética , Filogenia , Doenças das Plantas/microbiologia , Verticillium/fisiologia , Gossypium/genética , Extratos Vegetais , Resistência à Doença/fisiologia , Regulação da Expressão Gênica de Plantas
18.
Pest Manag Sci ; 80(2): 554-568, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37733166

RESUMO

PURPOSE AND METHODS: Botrytis cinerea is the primary disease affecting cucumber production. It can be managed by applying pesticides and cultivating disease-resistant cucumber strains. However, challenges, such as drug resistance in pathogenic bacteria and changes in physiological strains, are obstacles in the effective management of B. cinerea. Nano-selenium (Nano-Se) has potential in enhancing crop resistance to biological stress, but the exact mechanism for boosting disease resistance remains unclear. Here, we used metabolomics and transcriptomics to examine how Nano-Se, as an immune activator, induces plant resistance. RESULT: Compared with the control group, the application of 10.0 mg/L Nano-Se on the cucumber plant's leaf surface resulted in increased levels of chlorophyll, catalase (10.2%), glutathione (326.6%), glutathione peroxidase (52.2%), cucurbitacin (41.40%), and metabolites associated with the phenylpropane synthesis pathway, as well as the total antioxidant capacity (21.3%). Additionally, the expression levels of jasmonic acid (14.8 times) and related synthetic genes, namely LOX (264.1%), LOX4 (224.1%), and AOC2 (309.2%), were up-regulated. A transcription analysis revealed that the CsaV3_4G002860 gene was up-regulated in the KEGG enrichment pathway in response to B. cinerea infection following the 10.0 mg/L Nano-Se treatment. DISCUSSION: In conclusion, the activation of the phenylpropane biosynthesis and branched-chain fatty acid pathways by Nano-Se promotes the accumulation of jasmonic acid and cucurbitacin in cucumber plants. This enhancement enables the plants to exhibit resistance against B. cinerea infections. Additionally, this study identified a potential candidate gene for cucumber resistance to B. cinerea induced by Nano-Se, thereby laying a theoretical foundation for further research in this area. © 2023 Society of Chemical Industry.


Assuntos
Cucumis sativus , Ciclopentanos , Hidroxibenzoatos , Oxilipinas , Selênio , Cucumis sativus/genética , Cucumis sativus/microbiologia , Cucurbitacinas , Selênio/farmacologia , Selênio/metabolismo , Botrytis/fisiologia , Plantas/metabolismo , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas
20.
J Fish Dis ; 47(3): e13902, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38041240

RESUMO

To prevent catfish idiopathic anaemia, diets fortified with iron have been adopted as a regular practice on commercial catfish farms to promote erythropoiesis. However, the effects of prolonged exposure of excess dietary iron on production performance and disease resistance for hybrid catfish (Ictalurus punctatus × I. furcatus) remains unknown. Four experimental diets were supplemented with ferrous monosulphate to provide 0, 500, 1000, and 1500 mg of iron per kg of diet. Groups of 16 hybrid catfish juveniles (~22.4 g) were stocked in each of 20, 110-L aquaria (n = 5), and experimental diets were offered to the fish to apparent satiation for 12 weeks. At the end of the study, production performance, survival, condition indices, as well as protein and iron retention were unaffected by the dietary treatments. Blood haematocrit and the iron concentration in the whole-body presented a linear increase with the increasing the dietary iron. The remaining fish from the feeding trial was challenged with Edwardsiella ictaluri. Mortality was mainly observed for the dietary groups treated with iron supplemented diets. The results for this study suggest that iron supplementation beyond the required levels does affect the blood production, and it may increase their susceptibility to E. ictaluri infection.


Assuntos
Peixes-Gato , Infecções por Enterobacteriaceae , Doenças dos Peixes , Ictaluridae , Animais , Resistência à Doença , Edwardsiella ictaluri , Ferro/farmacologia , Ferro da Dieta , Hematócrito , Doenças dos Peixes/prevenção & controle , Dieta/veterinária , Suplementos Nutricionais , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA